Business Process Modeling Abstraction Based on Semi-Supervised Clustering Analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Document Clustering Based On Semi-Supervised Term Clustering

The study is conducted to propose a multi-step feature (term) selection process and in semi-supervised fashion, provide initial centers for term clusters. Then utilize the fuzzy c-means (FCM) clustering algorithm for clustering terms. Finally assign each of documents to closest associated term clusters. While most text clustering algorithms directly use documents for clustering, we propose to f...

متن کامل

Feature Selection based Semi-Supervised Subspace Clustering

Clustering is the process which is used to assign a set of n objects into clusters(groups). Dimensionality reduction techniques help in increasing the accuracy of clustering results by removing redundant and irrelevant dimensions. But, in most of the situations, objects can be related in different ways in different subsets of the dimensions. Dimensionality reduction tends to get rid of such rel...

متن کامل

Semi-supervised Clustering

Clustering is an unsupervised learning problem whose objective is to find a partition of the given data. However, a major challenge in clustering is to define an appropriate objective function in order to to find an optimal partition that is useful to the user. To facilitate data clustering, it has been suggested that the user provide some supplementary information about the data (eg. pairwise ...

متن کامل

Semi-Supervised Projected Clustering

Recent studies suggest that projected clusters with extremely low dimensionality exist in many real datasets. A number of projected clustering algorithms have been proposed in the past several years, but few can identify clusters with dimensionality lower than 10% of the total number of dimensions, which are commonly found in some real datasets such as gene expression profiles. In this paper we...

متن کامل

Semi-supervised clustering methods

Cluster analysis methods seek to partition a data set into homogeneous subgroups. It is useful in a wide variety of applications, including document processing and modern genetics. Conventional clustering methods are unsupervised, meaning that there is no outcome variable nor is anything known about the relationship between the observations in the data set. In many situations, however, informat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Business & Information Systems Engineering

سال: 2016

ISSN: 2363-7005,1867-0202

DOI: 10.1007/s12599-016-0457-x